Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.719
Filtrar
2.
J Virol ; 98(1): e0152223, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38169306

RESUMO

Understanding how different amino acids affect the HIV-1 envelope (Env) trimer will greatly help the design and development of vaccines that induce broadly neutralizing antibodies (bnAbs). A tryptophan residue at position 375 that opens the CD4 binding site without modifying the trimer apex was identified using our saturation mutagenesis strategy. 375W was introduced into a large panel of 27 transmitted/founder, acute stage, chronic infection, and AIDS macrophage-tropic and non-macrophage-tropic primary envelopes from different clades (A, B, C, D, and G) as well as complex and circulating recombinants. We evaluated soluble CD4 and monoclonal antibody neutralization of WT and mutant Envs together with macrophage infection. The 375W substitution increased sensitivity to soluble CD4 in all 27 Envs and macrophage infection in many Envs including an X4 variant. Importantly, 375W did not impair or abrogate neutralization by potent bnAbs. Variants that were already highly macrophage tropic were compromised for macrophage tropism, indicating that other structural factors are involved. Of note, we observed a macrophage-tropic (clade G) and intermediate macrophage-tropic (clades C and D) primary Envs from the blood and not from the central nervous system (CNS), indicating that such variants could be released from the brain or evolve outside the CNS. Our data also indicate that "intermediate" macrophage-tropic variants should belong to a new class of HIV-1 tropism. These Envs infected macrophages more efficiently than non-macrophage-tropic variants without reaching the high levels of macrophage-tropic brain variants. In summary, we show that 375W is ideal for inclusion into HIV-1 vaccines, increasing Env binding to CD4 for widely diverse Envs from different clades and disease stages.IMPORTANCESubstitutions exposing the CD4 binding site (CD4bs) on HIV-1 trimers but still occluding non-neutralizing, immunogenic epitopes are desirable to develop HIV-1 vaccines. If such substitutions induce similar structural changes in trimers across diverse clades, they could be exploited for the development of multi-clade envelope (Env) vaccines. We show that the 375W substitution increases CD4 affinity for envelopes of all clades, circulating recombinant forms, and complex Envs tested, independent of disease stage. Clade B and C Envs with an exposed CD4bs were described for macrophage-tropic strains from the central nervous system (CNS). Here, we show that intermediate (clades C and D) and macrophage-tropic (clade G) envelopes can be detected outside the CNS. Vaccines targeting the CD4bs will be particularly effective against such strains and CNS disease.


Assuntos
Infecções por HIV , HIV-1 , Tropismo Viral , Produtos do Gene env do Vírus da Imunodeficiência Humana , Humanos , Anticorpos Amplamente Neutralizantes/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Anticorpos Anti-HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/genética , Mutação , Desenvolvimento de Vacinas , Macrófagos/virologia , Antígenos CD4
3.
Nature ; 623(7989): 1026-1033, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37993716

RESUMO

Human immunodeficiency virus 1 (HIV-1) infection is initiated by binding of the viral envelope glycoprotein (Env) to the cell-surface receptor CD41-4. Although high-resolution structures of Env in a complex with the soluble domains of CD4 have been determined, the binding process is less understood in native membranes5-13. Here we used cryo-electron tomography to monitor Env-CD4 interactions at the membrane-membrane interfaces formed between HIV-1 and CD4-presenting virus-like particles. Env-CD4 complexes organized into clusters and rings, bringing the opposing membranes closer together. Env-CD4 clustering was dependent on capsid maturation. Subtomogram averaging and classification revealed that Env bound to one, two and finally three CD4 molecules, after which Env adopted an open state. Our data indicate that asymmetric HIV-1 Env trimers bound to one and two CD4 molecules are detectable intermediates during virus binding to host cell membranes, which probably has consequences for antibody-mediated immune responses and vaccine immunogen design.


Assuntos
Antígenos CD4 , Membrana Celular , Proteína gp120 do Envelope de HIV , HIV-1 , Multimerização Proteica , Humanos , Vacinas contra a AIDS/química , Vacinas contra a AIDS/imunologia , Capsídeo/química , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Antígenos CD4/química , Antígenos CD4/metabolismo , Antígenos CD4/ultraestrutura , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp120 do Envelope de HIV/ultraestrutura , Infecções por HIV/virologia , HIV-1/química , HIV-1/ultraestrutura , Vírion/química , Vírion/metabolismo , Vírion/ultraestrutura
4.
J Virol ; 97(9): e0071023, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37681958

RESUMO

The envelope (Env) glycoproteins on HIV-1 virions are the sole target of broadly neutralizing antibodies (bNAbs) and the focus of vaccines. However, many cross-reactive conserved epitopes are often occluded on virus particles, contributing to the evasion of humoral immunity. This study aimed to identify the Env epitopes that are exposed/occluded on HIV-1 particles and to investigate the mechanisms contributing to their masking. Using a flow cytometry-based assay, three HIV-1 isolates, and a panel of antibodies, we show that only select epitopes, including V2i, the gp120-g41 interface, and gp41-MPER, are accessible on HIV-1 particles, while V3, V2q, and select CD4bs epitopes are masked. These epitopes become accessible after allosteric conformational changes are induced by the pre-binding of select Abs, prompting us to test if similar conformational changes are required for these Abs to exhibit their neutralization capability. We tested HIV-1 neutralization where the virus-mAb mix was pre-incubated/not pre-incubated for 1 hour prior to adding the target cells. Similar levels of neutralization were observed under both assay conditions, suggesting that the interaction between virus and target cells sensitizes the virions for neutralization via bNAbs. We further show that lectin-glycan interactions can also expose these epitopes. However, this effect is dependent on the lectin specificity. Given that, bNAbs are ideal for providing sterilizing immunity and are the goal of current HIV-1 vaccine efforts, these data offer insight on how HIV-1 may occlude these vulnerable epitopes from the host immune response. In addition, the findings can guide the formulation of effective antibody combinations for therapeutic use. IMPORTANCE The human immunodeficiency virus (HIV-1) envelope (Env) glycoprotein mediates viral entry and is the sole target of neutralizing antibodies. Our data suggest that antibody epitopes including V2q (e.g., PG9, PGT145), CD4bs (e.g., VRC01, 3BNC117), and V3 (2219, 2557) are masked on HIV-1 particles. The PG9 and 2219 epitopes became accessible for binding after conformational unmasking was induced by the pre-binding of select mAbs. Attempts to understand the masking mechanism led to the revelation that interaction between virus and host cells is needed to sensitize the virions for neutralization by broadly neutralizing antibodies (bNAbs). These data provide insight on how bNAbs may gain access to these occluded epitopes to exert their neutralization effects and block HIV-1 infection. These findings have important implications for the way we evaluate the neutralizing efficacy of antibodies and can potentially guide vaccine design.


Assuntos
Anticorpos Amplamente Neutralizantes , Epitopos de Linfócito B , Anticorpos Anti-HIV , Infecções por HIV , HIV-1 , Interações entre Hospedeiro e Microrganismos , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/imunologia , Infecções por HIV/patologia , Infecções por HIV/virologia , HIV-1/química , HIV-1/imunologia , HIV-1/metabolismo , Lectinas/metabolismo , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/metabolismo , Vacinas contra a AIDS/química , Vacinas contra a AIDS/imunologia , Vírion/química , Vírion/imunologia , Vírion/metabolismo , Polissacarídeos/metabolismo
5.
J Virol ; 97(10): e0115423, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37772823

RESUMO

IMPORTANCE: HIV infection can be effectively treated to prevent the development of AIDS, but it cannot be cured. We have attached poisons to anti-HIV antibodies to kill the infected cells that persist even after years of effective antiviral therapy. Here we show that the killing of infected cells can be markedly enhanced by the addition of soluble forms of the HIV receptor CD4 or by mimics of CD4.


Assuntos
Antígenos CD4 , Citotoxinas , Anticorpos Anti-HIV , Infecções por HIV , HIV-1 , Imunoconjugados , Humanos , Antígenos CD4/química , Antígenos CD4/imunologia , Antígenos CD4/uso terapêutico , Linhagem Celular , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Infecções por HIV/patologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/imunologia , Imunoconjugados/química , Imunoconjugados/imunologia , Imunoconjugados/uso terapêutico , Peso Molecular , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/imunologia , Anticorpos Anti-HIV/uso terapêutico , Citotoxinas/química , Citotoxinas/uso terapêutico
6.
JAMA ; 329(7): 527-528, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36723948

RESUMO

This Medical News article discusses a clinical trial for an HIV vaccine that uses germline targeting, a novel technique to induce rare immune cell precursors of broadly neutralizing antibodies.


Assuntos
Vacinas contra a AIDS , Anticorpos Amplamente Neutralizantes , Infecções por HIV , HIV-1 , Humanos , Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/uso terapêutico , Anticorpos Neutralizantes/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle
7.
J Virol ; 97(3): e0185722, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36815832

RESUMO

Human immunodeficiency virus (HIV-1) entry into cells involves triggering of the viral envelope glycoprotein (Env) trimer ([gp120/gp41]3) by the primary receptor, CD4, and coreceptors, CCR5 or CXCR4. The pretriggered (State-1) conformation of the mature (cleaved) Env is targeted by broadly neutralizing antibodies (bNAbs), which are inefficiently elicited compared with poorly neutralizing antibodies (pNAbs). Here, we characterize variants of the moderately triggerable HIV-1AD8 Env on virions produced by an infectious molecular proviral clone; such virions contain more cleaved Env than pseudotyped viruses. We identified three types of cleaved wild-type AD8 Env trimers on virions: (i) State-1-like trimers preferentially recognized by bNAbs and exhibiting strong subunit association; (ii) trimers recognized by pNAbs directed against the gp120 coreceptor-binding region and exhibiting weak, detergent-sensitive subunit association; and (iii) a minor gp41-only population. The first Env population was enriched and the other Env populations reduced by introducing State-1-stabilizing changes in the AD8 Env or by treatment of the virions with crosslinker or the State-1-preferring entry inhibitor, BMS-806. These stabilized AD8 Envs were also more resistant to gp120 shedding induced by a CD4-mimetic compound or by incubation on ice. Conversely, a State-1-destabilized, CD4-independent AD8 Env variant exhibited weaker bNAb recognition and stronger pNAb recognition. Similar relationships between Env triggerability and antigenicity/shedding propensity on virions were observed for other HIV-1 strains. State-1 Envs on virions can be significantly enriched by minimizing the adventitious incorporation of uncleaved Env; stabilizing the pretriggered conformation by Env modification, crosslinking or BMS-806 treatment; strengthening Env subunit interactions; and using CD4-negative producer cells. IMPORTANCE Efforts to develop an effective HIV-1 vaccine have been frustrated by the inability to elicit broad neutralizing antibodies that recognize multiple virus strains. Such antibodies can bind a particular shape of the HIV-1 envelope glycoprotein trimer, as it exists on a viral membrane but before engaging receptors on the host cell. Here, we establish simple yet powerful assays to characterize the envelope glycoproteins in a natural context on virus particles. We find that, depending on the HIV-1 strain, some envelope glycoproteins change shape and fall apart, creating decoys that can potentially divert the host immune response. We identify requirements to keep the relevant envelope glycoprotein target for broad neutralizing antibodies intact on virus-like particles. These studies suggest strategies that should facilitate efforts to produce and use virus-like particles as vaccine immunogens.


Assuntos
HIV-1 , Vacinas , Vírion , Produtos do Gene env do Vírus da Imunodeficiência Humana , Humanos , Anticorpos Amplamente Neutralizantes/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Anticorpos Anti-HIV/imunologia , Conformação Proteica , Vacinas/metabolismo , Vacinas/farmacologia , Vírion/imunologia , Estabilidade Proteica , Desenvolvimento de Vacinas
8.
J Virol ; 97(1): e0164722, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36541800

RESUMO

Broadly neutralizing antibodies (bNAbs) against the membrane-proximal external region (MPER) of the gp41 component of the human immunodeficiency virus type 1 (HIV-1) envelope (Env) are characterized by long, hydrophobic, heavy chain complementarity-determining region 3s (HCDR3s) that interact with the MPER and some viral membrane lipids to achieve increased local concentrations. Here, we show that increasing the local concentration of MPER-directed bNAbs at the cell surface via binding to the high-affinity Fc receptor FcγRI potentiates their ability to prevent viral entry in a manner analogous to the previously reported observation wherein the lipid-binding activity of MPER bNAbs increases their concentration at the viral surface membrane. However, binding of MPER-directed bNAb 10E8 to FcγRI abolishes the neutralization synergy that is seen with the N-heptad repeat (NHR)-targeting antibody D5_AR and NHR-targeting small molecule enfuvirtide (T20), possibly due to decreased accessibility of the NHR in the FcγRI-10E8-MPER complex. Taken together, our results suggest that lipid-binding activity and FcγRI-mediated potentiation function in concert to improve the potency of MPER-directed bNAbs by increasing their local concentration near the site of viral fusion. Therefore, lipid binding may not be a strict requirement for potent neutralization by MPER-targeting bNAbs, as alternative methods can achieve similar increases in local concentrations while avoiding potential liabilities associated with immunologic host tolerance. IMPORTANCE The trimeric glycoprotein Env, the only viral protein expressed on the surface of HIV-1, is the target of broadly neutralizing antibodies and the focus of most vaccine development efforts. Broadly neutralizing antibodies targeting the membrane proximal external region (MPER) of Env show lipid-binding characteristics, and modulating this interaction affects neutralization. In this study, we tested the neutralization potencies of variants of the MPER-targeting antibody 10E8 with different viral-membrane-binding and host FcγRI-binding capabilities. Our results suggest that binding to both lipid and FcγRI improves the neutralization potency of MPER-directed antibodies by concentrating the antibodies at sites of viral fusion. As such, lipid binding may not be uniquely required for MPER-targeting broadly neutralizing antibodies, as alternative methods to increase local concentration can achieve similar improvements in potency.


Assuntos
Anticorpos Amplamente Neutralizantes , Anticorpos Anti-HIV , Infecções por HIV , HIV-1 , Humanos , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp41 do Envelope de HIV/metabolismo , Infecções por HIV/imunologia , Lipídeos de Membrana , Receptores de IgG/metabolismo
10.
Science ; 378(6623): eadd6502, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36454825

RESUMO

Broadly neutralizing antibodies (bnAbs) can protect against HIV infection but have not been induced by human vaccination. A key barrier to bnAb induction is vaccine priming of rare bnAb-precursor B cells. In a randomized, double-blind, placebo-controlled phase 1 clinical trial, the HIV vaccine-priming candidate eOD-GT8 60mer adjuvanted with AS01B had a favorable safety profile and induced VRC01-class bnAb precursors in 97% of vaccine recipients with median frequencies reaching 0.1% among immunoglobulin G B cells in blood. bnAb precursors shared properties with bnAbs and gained somatic hypermutation and affinity with the boost. The results establish clinical proof of concept for germline-targeting vaccine priming, support development of boosting regimens to induce bnAbs, and encourage application of the germline-targeting strategy to other targets in HIV and other pathogens.


Assuntos
Vacinas contra a AIDS , Anticorpos Amplamente Neutralizantes , Células Germinativas , Anticorpos Anti-HIV , Infecções por HIV , Cadeias Pesadas de Imunoglobulinas , Cadeias Leves de Imunoglobulina , Humanos , Adjuvantes Imunológicos , Vacinas contra a AIDS/imunologia , Anticorpos Amplamente Neutralizantes/genética , Anticorpos Amplamente Neutralizantes/imunologia , Infecções por HIV/prevenção & controle , Vacinação , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/imunologia , Células Germinativas/imunologia , Linfócitos B/imunologia , Mutação , Cadeias Leves de Imunoglobulina/genética , Cadeias Leves de Imunoglobulina/imunologia , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Masculino , Feminino , Adulto
11.
Nature ; 609(7929): 998-1004, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36131022

RESUMO

Germinal centres are the engines of antibody evolution. Here, using human immunodeficiency virus (HIV) Env protein immunogen priming in rhesus monkeys followed by a long period without further immunization, we demonstrate germinal centre B (BGC) cells that last for at least 6 months. A 186-fold increase in BGC cells was present by week 10 compared with conventional immunization. Single-cell transcriptional profiling showed that both light- and dark-zone germinal centre states were sustained. Antibody somatic hypermutation of BGC cells continued to accumulate throughout the 29-week priming period, with evidence of selective pressure. Env-binding BGC cells were still 49-fold above baseline at 29 weeks, which suggests that they could remain active for even longer periods of time. High titres of HIV-neutralizing antibodies were generated after a single booster immunization. Fully glycosylated HIV trimer protein is a complex antigen, posing considerable immunodominance challenges for B cells1,2. Memory B cells generated under these long priming conditions had higher levels of antibody somatic hypermutation, and both memory B cells and antibodies were more likely to recognize non-immunodominant epitopes. Numerous BGC cell lineage phylogenies spanning more than the 6-month germinal centre period were identified, demonstrating continuous germinal centre activity and selection for at least 191 days with no further antigen exposure. A long-prime, slow-delivery (12 days) immunization approach holds promise for difficult vaccine targets and suggests that patience can have great value for tuning of germinal centres to maximize antibody responses.


Assuntos
Afinidade de Anticorpos , Linfócitos B , Movimento Celular , Células Clonais , Centro Germinativo , Anticorpos Anti-HIV , Imunização , Animais , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Afinidade de Anticorpos/genética , Afinidade de Anticorpos/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Células Clonais/citologia , Células Clonais/imunologia , Epitopos de Linfócito B/imunologia , Perfilação da Expressão Gênica , Centro Germinativo/citologia , Centro Germinativo/imunologia , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Humanos , Imunização Secundária , Macaca mulatta/imunologia , Macaca mulatta/virologia , Células B de Memória/citologia , Células B de Memória/imunologia , Análise de Célula Única , Hipermutação Somática de Imunoglobulina/genética , Hipermutação Somática de Imunoglobulina/imunologia , Fatores de Tempo , Produtos do Gene env do Vírus da Imunodeficiência Humana/administração & dosagem , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
12.
J Virol ; 96(17): e0119122, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36000845

RESUMO

Epitopes with evidence of HLA-II-associated adaptation induce poorly immunogenic CD4+ T-cell responses in HIV-positive (HIV+) individuals. Many such escaped CD4+ T-cell epitopes are encoded by HIV-1 vaccines being evaluated in clinical trials. Here, we assessed whether this viral adaptation adversely impacts CD4+ T-cell responses following HIV-1 vaccination, thereby representing escaped epitopes. When evaluated in separate peptide pools, vaccine-encoded adapted epitopes (AE) induced CD4+ T-cell responses less frequently than nonadapted epitopes (NAE). We also demonstrated that in a polyvalent vaccine, where both forms of the same epitope were encoded, AE were less immunogenic. NAE-specific CD4+ T cells had increased, albeit low, levels of interferon gamma (IFN-γ) cytokine production. Single-cell transcriptomic analyses showed that NAE-specific CD4+ T cells expressed interferon-related genes, while AE-specific CD4+ T cells resembled a Th2 phenotype. Importantly, the magnitude of NAE-specific CD4+ T-cell responses, but not that of AE-specific responses, was found to positively correlate with Env-specific antibodies in a vaccine efficacy trial. Together, these findings show that HLA-II-associated viral adaptation reduces CD4+ T-cell responses in HIV-1 vaccine recipients and suggest that vaccines encoding a significant number of AE may not provide optimal B-cell help for HIV-specific antibody production. IMPORTANCE Despite decades of research, an effective HIV-1 vaccine remains elusive. Vaccine strategies leading to the generation of broadly neutralizing antibodies are likely needed to provide the best opportunity of generating a protective immune response against HIV-1. Numerous studies have demonstrated that T-cell help is necessary for effective antibody generation. However, immunogen sequences from recent HIV-1 vaccine efficacy trials include CD4+ T-cell epitopes that have evidence of immune escape. Our study shows that these epitopes, termed adapted epitopes, elicit lower frequencies of CD4+ T-cell responses in recipients from multiple HIV-1 vaccine trials. Additionally, the counterparts to these epitopes, termed nonadapted epitopes, elicited CD4+ T-cell responses that correlated with Env-specific antibodies in one efficacy trial. These results suggest that vaccine-encoded adapted epitopes dampen CD4+ T-cell responses, potentially impacting both HIV-specific antibody production and efficacious vaccine efforts.


Assuntos
Vacinas contra a AIDS , Formação de Anticorpos , Linfócitos T CD4-Positivos , Epitopos de Linfócito T , Infecções por HIV , HIV-1 , Antígenos HLA-D , Evasão da Resposta Imune , Vacinas contra a AIDS/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Linfócitos T CD4-Positivos/imunologia , Ensaios Clínicos como Assunto , Epitopos de Linfócito T/imunologia , Anticorpos Anti-HIV/biossíntese , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , HIV-1/imunologia , Antígenos HLA-D/imunologia , Humanos
14.
Nature ; 606(7913): 375-381, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35650437

RESUMO

Antiretroviral therapy is highly effective in suppressing human immunodeficiency virus (HIV)1. However, eradication of the virus in individuals with HIV has not been possible to date2. Given that HIV suppression requires life-long antiretroviral therapy, predominantly on a daily basis, there is a need to develop clinically effective alternatives that use long-acting antiviral agents to inhibit viral replication3. Here we report the results of a two-component clinical trial involving the passive transfer of two HIV-specific broadly neutralizing monoclonal antibodies, 3BNC117 and 10-1074. The first component was a randomized, double-blind, placebo-controlled trial that enrolled participants who initiated antiretroviral therapy during the acute/early phase of HIV infection. The second component was an open-label single-arm trial that enrolled individuals with viraemic control who were naive to antiretroviral therapy. Up to 8 infusions of 3BNC117 and 10-1074, administered over a period of 24 weeks, were well tolerated without any serious adverse events related to the infusions. Compared with the placebo, the combination broadly neutralizing monoclonal antibodies maintained complete suppression of plasma viraemia (for up to 43 weeks) after analytical treatment interruption, provided that no antibody-resistant HIV was detected at the baseline in the study participants. Similarly, potent HIV suppression was seen in the antiretroviral-therapy-naive study participants with viraemia carrying sensitive virus at the baseline. Our data demonstrate that combination therapy with broadly neutralizing monoclonal antibodies can provide long-term virological suppression without antiretroviral therapy in individuals with HIV, and our experience offers guidance for future clinical trials involving next-generation antibodies with long half-lives.


Assuntos
Fármacos Anti-HIV , Anticorpos Neutralizantes , Anticorpos Anti-HIV , Infecções por HIV , HIV-1 , Fármacos Anti-HIV/administração & dosagem , Fármacos Anti-HIV/efeitos adversos , Fármacos Anti-HIV/imunologia , Fármacos Anti-HIV/uso terapêutico , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/efeitos adversos , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Amplamente Neutralizantes/administração & dosagem , Anticorpos Amplamente Neutralizantes/efeitos adversos , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Amplamente Neutralizantes/uso terapêutico , Método Duplo-Cego , Anticorpos Anti-HIV/administração & dosagem , Anticorpos Anti-HIV/efeitos adversos , Anticorpos Anti-HIV/imunologia , Anticorpos Anti-HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/imunologia , HIV-1/isolamento & purificação , Humanos , Carga Viral/efeitos dos fármacos , Viremia/tratamento farmacológico , Viremia/imunologia , Viremia/virologia
15.
J Virol ; 96(10): e0027022, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35510865

RESUMO

Some HIV-infected people develop broadly neutralizing antibodies (bNAbs) that block many diverse, unrelated strains of HIV from infecting target cells and, through passive immunization, protect animals and humans from infection. Therefore, understanding the development of bNAbs and their neutralization can inform the design of an HIV vaccine. Here, we extend our previous studies of the ontogeny of the CAP256-VRC26 V2-targeting bNAb lineage by defining the mutations that confer neutralization to the unmutated common ancestor (CAP256.UCA). Analysis of the sequence of the CAP256.UCA showed that many improbable mutations were located in the third complementarity-determining region of the heavy chain (CDRH3) and the heavy chain framework 3 (FR3). Transferring the CDRH3 from bNAb CAP256.25 (63% breadth and 0.003 µg/mL potency) into the CAP256.UCA introduced breadth and the ability to neutralize emerging viral variants. In addition, we showed that the framework and light chain contributed to potency and that the second CDR of the light chain forms part of the paratope of CAP256.25. Notably, a minimally mutated CAP256 antibody, with 41% of the mutations compared to bNAb CAP256.25, was broader (64% breadth) and more potent (0.39 µg/mL geometric potency) than many unrelated bNAbs. Together, we have identified key regions and mutations that confer breadth and potency in a V2-specific bNAb lineage. These data indicate that immunogens that target affinity maturation to key sites in CAP256-VRC26-like precursors, including the CDRHs and light chain, could rapidly elicit breadth through vaccination. IMPORTANCE A major focus in the search for an HIV vaccine is elucidating the ontogeny of broadly neutralizing antibodies (bNAbs), which prevent HIV infection in vitro and in vivo. The unmutated common ancestors (UCAs) of bNAbs are generally strain specific and acquire breadth through extensive, and sometimes redundant, somatic hypermutation during affinity maturation. We investigated which mutations in the CAP256-VRC26 bNAb lineage conferred neutralization capacity to the UCA. We found that mutations in the antibody heavy and light chains had complementary roles in neutralization breadth and potency, respectively. The heavy chain, particularly the third complementarity-determining region, was responsible for conferring breadth. In addition, previously uninvestigated mutations in the framework also contributed to breadth. Together, approximately half of the mutations in CAP256.25 were necessary for broader and more potent neutralization than many unrelated neutralizing antibodies. Vaccine approaches that promote affinity maturation at key sites could therefore more rapidly produce antibodies with neutralization breadth.


Assuntos
Anticorpos Amplamente Neutralizantes , Anticorpos Anti-HIV , Infecções por HIV , Animais , Anticorpos Amplamente Neutralizantes/genética , Anticorpos Amplamente Neutralizantes/imunologia , Regiões Determinantes de Complementaridade/genética , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1 , Humanos
16.
J Virol ; 96(11): e0023122, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35536018

RESUMO

Despite the worldwide availability of antiretroviral therapy (ART), approximately 150,000 pediatric HIV infections continue to occur annually. ART can dramatically reduce HIV mother-to-child transmission (MTCT), but inconsistent drug access and adherence, as well as primary maternal HIV infection during pregnancy and lactation are major barriers to eliminating vertical HIV transmission. Thus, immunologic strategies to prevent MTCT, such as an HIV vaccine, will be required to attain an HIV-free generation. A primary goal of HIV vaccine research has been to elicit broadly neutralizing antibodies (bnAbs) given the ability of passive bnAb immunization to protect against sensitive strains, yet we previously observed that HIV-transmitting mothers have more plasma neutralization breadth than nontransmitting mothers. Additionally, we have identified infant transmitted/founder (T/F) viruses that escape maternal bnAb responses. In this study, we examine a cohort of postpartum HIV-transmitting women with neutralization breadth to determine if certain maternal bnAb specificities drive the selection of infant T/F viruses. Using HIV pseudoviruses that are resistant to neutralizing antibodies targeting common bnAb epitopes, we mapped the plasma bnAb specificities of this cohort. Significantly more transmitting women with plasma bnAb activity had a mappable plasma bnAb specificity (six of seven, or 85.7%) compared to that of nontransmitting women with plasma bnAb activity (7 of 21, or 33.3%, P = 0.029 by 2-sided Fisher exact test). Our study suggests that having multispecific broad activity and/or uncommon epitope-specific bnAbs in plasma may be associated with protection against the vertical HIV transmission in the setting of maternal bnAb responses. IMPORTANCE As mother to child transmission (MTCT) of HIV plays a major part in the persistence of the HIV/AIDS epidemic and bnAb-based passive and active vaccines are a primary strategy for HIV prevention, research in this field is of great importance. While previous MTCT research has investigated the neutralizing antibody activity of HIV-infected women, this is, to our knowledge, the largest study identifying differences in bnAb specificity of maternal plasma between transmitting and nontransmitting women. Here, we show that among HIV-infected women with broad and potent neutralization activity, more postpartum-transmitting women had a mappable plasma broadly neutralizing antibody (bnAb) specificity, compared to that of nontransmitting women, suggesting that the nontransmitting women more often have multispecific bnAb responses or bnAb responses that target uncommon epitopes. Such responses may be required for protection against vertical HIV transmission in the setting of maternal bnAb responses.


Assuntos
Formação de Anticorpos , Anticorpos Amplamente Neutralizantes , Infecções por HIV , Soropositividade para HIV , Transmissão Vertical de Doenças Infecciosas , Vacinas contra a AIDS , Epitopos , Feminino , Anticorpos Anti-HIV/imunologia , Infecções por HIV/transmissão , HIV-1 , Humanos , Lactente , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Gravidez
17.
Front Immunol ; 13: 840976, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572573

RESUMO

A better understanding of the impact of early innate immune responses after vaccine priming on vaccine-elicited adaptive immune responses could inform rational design for effective HIV vaccines. The current study compared the whole blood molecular immune signatures of a 3M-052-SE adjuvanted HIV Env protein vaccine to a regimen combining the adjuvanted Env protein with simultaneous administration of a modified Vaccinia Ankara vector expressing HIV Env in infant rhesus macaques at days 0, 1, and 3 post vaccine prime. Both vaccines induced a rapid innate response, evident by elevated inflammatory plasma cytokines and altered gene expression. We identified 25 differentially-expressed genes (DEG) on day 1 compared to day 0 in the HIV protein vaccine group. In contrast, in the group that received both the Env protein and the MVA-Env vaccine only two DEG were identified, implying that the MVA-Env modified the innate response to the adjuvanted protein vaccine. By day 3, only three DEG maintained altered expression, indicative of the transient nature of the innate response. The DEG represented immune pathways associated with complement activation, type I interferon and interleukin signaling, pathogen sensing, and induction of adaptive immunity. DEG expression on day 1 was correlated to Env-specific antibody responses, in particular antibody-dependent cytotoxicity responses at week 34, and Env-specific follicular T helper cells. Results from network analysis supported the interaction of DEG and their proteins in B cell activation. These results emphasize that vaccine-induced HIV-specific antibody responses can be optimized through the modulation of the innate response to the vaccine prime.


Assuntos
Vacinas contra a AIDS , Anticorpos Anti-HIV/sangue , Infecções por HIV , Proteínas do Envelope Viral/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Produtos do Gene env , Anticorpos Anti-HIV/imunologia , Infecções por HIV/prevenção & controle , Humanos , Macaca mulatta , Vacinação , Vírus Vaccinia/genética
18.
J Virol ; 96(7): e0187821, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35289647

RESUMO

Binding to the receptor, CD4, drives the pretriggered, "closed" (State-1) conformation of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer ([gp120/gp41]3) into more "open" conformations. HIV-1 Env on the viral membrane is maintained in a State-1 conformation that resists binding and neutralization by commonly elicited antibodies. Premature triggering of Env before the virus engages a target cell typically leads to increased susceptibility to spontaneous inactivation or ligand-induced neutralization. Here, we showed that single amino acid substitutions in the gp41 membrane-proximal external region (MPER) of a primary HIV-1 strain resulted in viral phenotypes indicative of premature triggering of Env to downstream conformations. Specifically, the MPER changes reduced viral infectivity and globally increased virus sensitivity to poorly neutralizing antibodies, soluble CD4, a CD4-mimetic compound, and exposure to cold. In contrast, the MPER mutants exhibited decreased sensitivity to the State 1-preferring inhibitor, BMS-806, and to the PGT151 broadly neutralizing antibody. Depletion of cholesterol from virus particles did not produce the same State 1-destabilizing phenotypes as MPER alterations. Notably, State 1-stabilizing changes in Env distant from the MPER could minimize the phenotypic effects of MPER alteration but did not affect virus sensitivity to cholesterol depletion. Thus, membrane-proximal gp41 elements contribute to the maintenance of the pretriggered Env conformation. The conformationally disruptive effects of MPER changes can be minimized by distant State 1-stabilizing Env modifications, a strategy that may be useful in preserving the native pretriggered state of Env. IMPORTANCE The pretriggered shape of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) is a major target for antibodies that can neutralize many strains of the virus. An effective HIV-1 vaccine may need to raise these types of antibodies, but this goal has proven difficult. One reason is that the pretriggered shape of Env is unstable and dependent on interactions near the viral membrane. Here, we showed that the membrane-proximal external region (MPER) of Env plays an important role in maintaining Env in a pretriggered shape. Alterations in the MPER resulted in global changes in Env conformation that disrupted its pretriggered shape. We also found that these disruptive effects of MPER changes could be minimized by distant Env modifications that stabilized the pretriggered shape. These modifications may be useful for preserving the native shape of Env for structural and vaccine studies.


Assuntos
Infecções por HIV , HIV-1 , Anticorpos Neutralizantes , Produtos do Gene env/química , Produtos do Gene env/imunologia , Glicoproteínas/química , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/química , HIV-1/imunologia , Humanos
19.
Nat Commun ; 13(1): 662, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115533

RESUMO

Increasingly, antibodies are being used to treat and prevent viral infections. In the context of HIV, efficacy is primarily attributed to dose-dependent neutralization potency and to a lesser extent Fc-mediated effector functions. It remains unclear whether augmenting effector functions of broadly neutralizing antibodies (bNAbs) may improve their clinical potential. Here, we use bNAb 10E8v4 targeting the membrane external proximal region (MPER) to examine the role of antibody-mediated effector and complement (C') activity when administered prophylactically against SHIV challenge in rhesus macaques. With sub-protective dosing, we find a 78-88% reduction in post-acute viremia that is associated with 10E8v4-mediated phagocytosis acting at the time of challenge. Neither plasma nor tissue viremic outcomes in vivo is improved with an Fc-modified variant of 10E8v4 enhanced for C' functions as determined in vitro. These results suggest that effector functions inherent to unmodified 10E8v4 contribute to efficacy against SHIVSF162P3 in the absence of plasma neutralizing titers, while C' functions are dispensable in this setting, informing design of bNAb modifications for improving protective efficacy.


Assuntos
Anticorpos Amplamente Neutralizantes/imunologia , Proteínas do Sistema Complemento/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Fagocitose/imunologia , Viremia/imunologia , Animais , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Anticorpos Amplamente Neutralizantes/metabolismo , Anticorpos Amplamente Neutralizantes/farmacologia , Linhagem Celular Tumoral , Proteínas do Sistema Complemento/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Anticorpos Anti-HIV/metabolismo , Anticorpos Anti-HIV/farmacologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Macaca mulatta , Masculino , Fagocitose/efeitos dos fármacos , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Viremia/sangue , Viremia/prevenção & controle
20.
Nat Commun ; 13(1): 695, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121758

RESUMO

HIV Envelope (Env) is the main vaccine target for induction of neutralizing antibodies. Stabilizing Env into native-like trimer (NLT) conformations is required for recombinant protein immunogens to induce autologous neutralizing antibodies(nAbs) against difficult to neutralize HIV strains (tier-2) in rabbits and non-human primates. Immunizations of mice with NLTs have generally failed to induce tier-2 nAbs. Here, we show that DNA-encoded NLTs fold properly in vivo and induce autologous tier-2 nAbs in mice. DNA-encoded NLTs also uniquely induce both CD4 + and CD8 + T-cell responses as compared to corresponding protein immunizations. Murine neutralizing antibodies are identified with an advanced sequencing technology. The structure of an Env-Ab (C05) complex, as determined by cryo-EM, identifies a previously undescribed neutralizing Env C3/V5 epitope. Beyond potential functional immunity gains, DNA vaccines permit in vivo folding of structured antigens and provide significant cost and speed advantages for enabling rapid evaluation of new HIV vaccines.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Vacinas de DNA/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/administração & dosagem , Animais , Anticorpos Neutralizantes/ultraestrutura , Antígenos Virais/imunologia , Linhagem Celular Tumoral , Microscopia Crioeletrônica , ELISPOT , Epitopos/imunologia , Células HEK293 , Anticorpos Anti-HIV/ultraestrutura , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Interferon gama/imunologia , Interferon gama/metabolismo , Camundongos Endogâmicos BALB C , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/virologia , Vacinação/métodos , Vacinas de DNA/administração & dosagem , Produtos do Gene env do Vírus da Imunodeficiência Humana/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...